Cyclization of Phenyl 3-Arylpropionates under the Action of $\mathrm{HSO}_{3} \mathrm{~F}$ or AlBr_{3}

D. S. Ryabukhin ${ }^{a}$, G. K. Fukin ${ }^{b}$, A. V. Cherkasov ${ }^{b}$, and A. V. Vasil'eva ${ }^{a}$
${ }^{\text {a St. Petersburg State Academy of Forestry Engineering, St. Petersburg, } 194021 \text { Russia }}$ e-mail: aleksvasil@mail.ru
${ }^{\text {b Razuvaev }}$ Institute of Organometallic Chemistry, Russian Academy of Sciences, Russia

Received December 11, 2008

DOI: 10.1134/S1070428009080259

Superacids of Brønsted type ($\mathrm{HSO}_{3} \mathrm{~F}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ etc.) and strong Lewis acids ($\mathrm{SbF}_{5}, \mathrm{AlHlg}_{3}$ etc.) are widely used for superelectrophilic activation of organic compounds in generation of reactive polycation intermediates resulting from the protonation or coordination interaction with basic (electron-donor) sites of the molecules of organic substances [1]. These reactions underlie the newly developed methods of synthesis of versatile compounds [1], in particular, the synthesis of cyclic structures of indan [2-7] and quinoline series [8-10] from acetylene derivatives.

We report here on the results of the study of phenyl 3-arylpropionates Ia and $\mathbf{I b}$ transformation under the action of $\mathrm{HSO}_{3} \mathrm{~F}$ or AlBr_{3}. The protonation in $\mathrm{HSO}_{3} \mathrm{~F}$ or the coordination with AlBr_{3} at the carbonyl oxygen and acetylene bond of substrates Ia and $\mathbf{I b}$ results in the formation of cationic intermediates $\mathbf{A a}, \mathbf{A b}$ or \mathbf{B} respectively reacting further along different paths (see the scheme.

In $\mathrm{HSO}_{3} \mathrm{~F}$ at $-75^{\circ} \mathrm{C}$ in 0.5 h propionates Ia and $\mathbf{~ I b}$ were transformed into the products of intramolecular cyclization, 4 -arylcoumarines IIa and IIb, in 12 and 10\% yield respectively at a complete conversion of the initial compounds.

The reaction of ester $\mathbf{I b}$ in benzene for 1 h at $20^{\circ} \mathrm{C}$ gave coumarines IIa and IIb and indanone III whose structure was established by XRD analysis (see the figure). In this case the overall yield of coumarines IIa and IIb reached 38% and significantly exceeded the yield of these compounds in $\mathrm{HSO}_{3} \mathrm{~F}$. 4-Phenylcoumarine (IIa) formed under the reaction conditions as a result of the
replacement of the para-tolyl group by a phenyl in the structure of IIb under the action of AlBr_{3} in benzene analogously to a similar exchange of aryl goups in indene systems [5].

In the presence of AlBr_{3} compound $\mathbf{I b}$ was brought into an intermolecular reaction with benzene resulting in indanone III. The most likely way of substance III formation consists in the primary addition of two benzene molecules to the acetylene bond of \mathbf{B} species followed by intramolecular acylation of the para-tolyl ring in the structure C. Analogous mechanism operates in the formation of 3,3-diphenylindanone from 3-phenylpropynic acid and benzene in $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ [2].

Molecular atructure of 6-methyl-3,3-diphenylindan-1-one (III) according to XRD data

Scheme.

XRD study of compound III showed that C^{8} atom possessed a tetrahedral coordination, the angle $\mathrm{CC}^{8} \mathrm{C}$ was in the range $102.5(1)-114.4(2)$ deg. The distance $\mathrm{C}^{8}-\mathrm{C}$ was $1.531(2)-1.556(2) \AA$, a characteristic value of the ordinary $\mathrm{C}-\mathrm{C}$ bond. The plane of the indan fragment divided the $\mathrm{C}^{17} \mathrm{C}^{8} \mathrm{C}^{11}$ angle materially in halves. In the crystal of compound III intermolecular interactions $\mathrm{O} \cdots \mathrm{H}$ $[2.41(2)-2.57(2) \AA]$ existed with the distance considerably shorter that the sum of the van der Waals radii of these atoms ($2.7 \AA$ [11]).

Phenyl 3-arylpropionates Ia and Ib were prepared from phenol and 3-phenylpropynic and 3-(4-methylphenyl)propynic acids respectively in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of dicyclohexylcarbodiimide and catalytic quantities of pyridine [12].

Phenyl-3-phenylpropionate (Ia). Yield 35\%, mp 38$40^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{C}\right.$ [13]). IR spectrum, $v, \mathrm{~cm}^{-1}: 2230$ and 2210 $(\mathrm{C} \equiv \mathrm{C}), 1720(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 7.19 \mathrm{~d}$ $\left(2 \mathrm{H}_{\text {arom }}, J 7.6 \mathrm{~Hz}\right), 7.27 \mathrm{t}\left(1 \mathrm{H}_{\text {arom }}, J 7.6 \mathrm{~Hz}\right), 7.40 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 7.4 \mathrm{~Hz}), 7.42 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}, J 7.6 \mathrm{~Hz}\right), 7.48 \mathrm{t}\left(1 \mathrm{H}_{\text {arom }}\right.$, $J 7.4 \mathrm{~Hz}), 7.62 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 7.4 \mathrm{~Hz}\right)$.

Phenyl-3-(4-methylphenyl)propionate (Ib). Yield $52 \%, \mathrm{mp} 82-84^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{v}, \mathrm{cm}^{-1}: 2230$ and 2210 $(\mathrm{C} \equiv \mathrm{C}), 1720(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 2.40 s
$(3 \mathrm{H}, \mathrm{Me}), 7.20 \mathrm{t}\left(4 \mathrm{H}_{\text {arom }}, J 8.2 \mathrm{~Hz}\right), 7.27 \mathrm{t}\left(1 \mathrm{H}_{\text {arom }}\right.$, $J 7.2 \mathrm{~Hz}), 7.41 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}, J 7.2 \mathrm{~Hz}\right), 7.51 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 7.2 \mathrm{~Hz}$). Found, \%: C 81.36; H 5.14. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$. Calculated, \%: C 81.34; H 5.12.

4-Phenylcoumarine (IIa). To 2 ml of $\mathrm{HSO}_{3} \mathrm{~F}$ cooled to $-75^{\circ} \mathrm{C}$ was added $200 \mathrm{mg}(0.9 \mathrm{mmol})$ of propionate Ia. The reaction mixture was stirred for 0.5 h at $-75^{\circ} \mathrm{C}$, then it was poured into 30 ml of concn. HCl cooled to $-70^{\circ} \mathrm{C}$. The mass obtained was diluted with water $(100 \mathrm{ml})$ and extracted with chloroform $(3 \times 50 \mathrm{ml})$. The combined extracts were washed with water, with saturated water solution of NaHCO_{3}, again with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was distilled off in a vacuum of a water-jet pump, the residue was subjected to column chromatography on silica gel (eluent hexaneethyl acetate). Yield $24 \mathrm{mg}(12 \%), \mathrm{mp} 88-90^{\circ} \mathrm{C}(90-91$ [14], $\left.101-103^{\circ} \mathrm{C}[15]\right)$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1720$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $6.38 \mathrm{~s}(1 \mathrm{H},=\mathrm{CH}-)$, $7.23 \mathrm{t}\left(1 \mathrm{H}_{\text {arom }}, J 7.6 \mathrm{~Hz}\right), 7.41 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }}, J 8.2 \mathrm{~Hz}\right), 7.45-$ $7.56 \mathrm{~m}\left(7 \mathrm{H}_{\text {arom }}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 222(100)$ $[M]^{+}, 221$ (50), 124 (93), 165 (67), 149 (38), 94 (53).

4-(4-Methylphenyl)coumarine (IIb) was similarly obtained from $200 \mathrm{mg}(0.8 \mathrm{mmol})$ of propionate $\mathbf{I b}$ in 3 ml HSO 33 at $-75^{\circ} \mathrm{C}$ within 0.5 h . Yield $20 \mathrm{mg}(10 \%)$,
mp 104- $106^{\circ} \mathrm{C}$ (109-110 [15], $105-106^{\circ} \mathrm{C}$ [16]). IR spectrum, $v, \mathrm{~cm}^{-1}: 1720(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $2.45 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 6.36 \mathrm{~s}(1 \mathrm{H},=\mathrm{CH}-), 7.20 \mathrm{t}\left(1 \mathrm{H}_{\text {arom }}\right.$, $J 8.0 \mathrm{~Hz}), 7.32-7.36 \mathrm{~m}\left(4 \mathrm{H}_{\text {arom }}\right), 7.40 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }}\right.$, $J 8.0 \mathrm{~Hz}), 7.53 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 9.0 \mathrm{~Hz}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 236$ (100) $[M]^{+}, 221$ (53), 208 (93), 178 (24), 165 (27), 159 (26), 119 (20), 105 (17), 91 (14).

Conversion of propionate Ib effected by AlBr_{3}. To a solution of 530 mg ($2 \mathrm{mmol}, 5$ equiv) of AlBr_{3} in 4 ml of benzene at $20^{\circ} \mathrm{C}$ was added $87 \mathrm{mg}(0.4 \mathrm{mmol})$ of compound $\mathbf{I b}$. The reaction mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$, then it was poured into 50 ml of water and extracted with chloroform $(3 \times 50 \mathrm{ml})$. The combined extracts were washed with water, with saturated water solution of NaHCO_{3}, again with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was distilled off in a vacuum, the residue was subjected to column chromatography on silica gel (eluent hexane-ethyl acetate). We obtained 12 mg (14\%) of compound IIa, 21 mg (24%) of compound IIb, and also 36 mg (32%) of 6-methyl-3,3-diphenyl-indan-1-one (III), mp $133-135^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm : $2.42 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.48 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.14-7.31 \mathrm{~m}\left(11 \mathrm{H}_{\text {arom }}\right)$, $7.41 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }}, J 7.9 \mathrm{~Hz}\right), 7.60 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 298$ (100) $[M]^{+}, 283$ (41), 221 (55), 178 (24), 165 (27), 119 (12), 105 (15), 91 (10). Found, \%: C 88.60; H 6.04. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$. Calculated, \%: C 88.56; H 6.08. M 298.14.

XRD of compound III. Crystals of the size $0.10 \times$ $0.08 \times 0.05 \mathrm{~mm} \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$ at $100(2) \mathrm{K}$ monoclinic, a 10.1223(5), b 9.0874(5), c 17.8697(9) \AA, α 90, b 104.238(1), $\gamma 90 \mathrm{deg}, V 1593.3(1) \AA^{3}, Z 4$, space group P2(1)/n, $d_{\text {calc }} 1.244 \mathrm{~g} / \mathrm{cm}^{3}, \mu 0.074 \mathrm{~mm}^{-1}, 3.06 \leq \theta \leq$ $27.00^{\circ}, 10032$ reflections measured, among them 3470 [$R_{\text {int }} 0.0312$] independent, $R_{1} 0.0474[I>2 \sigma(I)], w R_{2}$ 0.1217 (by all data). The structure was solved by the direct method and refined by the least-squares method on $F_{h k l}^{2}$ in an anisotropis approximation for all nonhydrogen atoms. The hydrogen atoms were revealed from the difference Fourier sybthesis and isotropically refined. All calculations were performed using software SHELXTL v. 6.10 [17].
${ }^{1} \mathrm{H}$ NMR spectra were registered on a spectrometer Bruker AM-500 (operating frequency 500 MHz) in
CDCl_{3}. The residual signal of $\mathrm{CHCl}_{3}(\delta 7.25 \mathrm{ppm})$ served as an internal reference. Mass spectra were measured on an instrument MKh-1321 (70 eV). IR spectra were recorded from solutions of compounds in CHCl_{3} on a spectrophotometer FSM-1201. In performing XRD analysis the experimental sets of intensities were measured on an automatic diffractometer Smart APEX (graphite monochromator, $\mathrm{Mo} K_{\alpha}$ radiation, $\omega-\theta$ scanning).

REFERENCES

1. Olah, G.A. and Klumpp, D.A., Superelectrophiles and Their Chemistry, New York: Wiley, 2008, p. 351.
2. Rendy, R., Zhang, Y., McElrea, A., Gomez, A., and Klumpp, D.A., J. Org. Shem., 2004, vol. 69, p. 2340.
3. Vasilyev, A.V., Walspurger, S., Haouas, M., Sommer, J., Pale, P., and Rudenko, A.P., Org. Biomol. Chem., vol. 2004, p. 3483.
4. Vasil'ev, A.V., Walspurger, S., Pale, P., Sommer, J., Haouas, M., and Rudenko, A.P., Zh. Org. Khim., 2004, vol. 40, p. 1819.
5. Vasil'ev, A.V. and Shchukin, A.O., Zh. Org. Khim., 2006, vol. 42, p. 1256.
6. Shchukin, A.O. and Vasil'ev, A.V., Zh. Org. Khim., 2007, vol. 43, p. 785.
7. Shchukin, A.O. and Vasilyev, A.V., Appl. Catal. A, 2008, vol. 336, p. 140.
8. Koltunov, K.Yu., Walspurger, S., and Sommer, J., Chem. Comтип., 2004, p. 1754.
9. Koltunov, K.Yu., Walspurger, S., and Sommer, J., Eur. J. Org. Shem., 2004, p. 4039.
10. Ryabukhin, D.S. and Vasil'ev, A.V., Zh. Org. Khim., 2008, vol. 44, p. 1875.
11. Batsanov, S.S., Zh. Neorg. Khim., 1991, vol. 36, p. 3015.
12. Neises, B. and Steglich, W., Angew. Chem. Int. Ed., 1978, vol. 17, p. 522.
13. Okajima, Y., Yakugaku Zasshi., 1960, vol. 80, p. 318; Chem. Abstr., 1960, vol. 54, 18487h.
14. Koehl, W.J., J. Org. Chem., 1967, vol. 32, p. 614.
15. Yamamoto, Y. and Kirai, N., Org. Lett., 2008, vol. 10, p. 5513.
16. Natarajan, M., Manimaran, T., and Ramakrishnan, V.T., Ind. J. Chem. B., 1984, vol. 23, p. 529.
17. Sheldrick, G.M., SHELXTL V. 6.10, Bruker, AXS, Inc., Madison, WI-53719, USA., 2000.
